• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Login
View Item 
  •   e-Arsiv@Uskudar : Digital Archive System
  • Psikoloji Bölümü
  • Psikoloji Bölümü Akademik Makale Listesi
  • View Item
  •   e-Arsiv@Uskudar : Digital Archive System
  • Psikoloji Bölümü
  • Psikoloji Bölümü Akademik Makale Listesi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multimodal Neuroimaging: Basic Concepts and Classification of Neuropsychiatric Diseases

Thumbnail
View/Open
Makale (369.3Kb)
Date
2018-05-18
Author
Tulay, Emine Elif
Metin, Baris
Tarhan, Nevzat
Arikan, Mehmet Kemal
Metadata
Show full item record
Abstract
Neuroimaging techniques are widely used in neuroscience to visualize neural activity, to improve our understanding of brain mechanisms, and to identify biomarkers—especially for psychiatric diseases; however, each neuroimaging technique has several limitations. These limitations led to the development of multimodal neuroimaging (MN), which combines data obtained from multiple neuroimaging techniques, such as electroencephalography, functional magnetic resonance imaging, and yields more detailed information about brain dynamics. There are several types of MN, including visual inspection, data integration, and data fusion. This literature review aimed to provide a brief summary and basic information about MN techniques (data fusion approaches in particular) and classification approaches. Data fusion approaches are generally categorized as asymmetric and symmetric. The present review focused exclusively on studies based on symmetric data fusion methods (data-driven methods), such as independent component analysis and principal component analysis. Machine learning techniques have recently been introduced for use in identifying diseases and biomarkers of disease. The machine learning technique most widely used by neuroscientists is classification—especially support vector machine classification. Several studies differentiated patients with psychiatric diseases and healthy controls with using combined datasets. The common conclusion among these studies is that the prediction of diseases increases when combining data via MN techniques; however, there remain a few challenges associated with MN, such as sample size. Perhaps in the future N-way fusion can be used to combine multiple neuroimaging techniques or nonimaging predictors (eg, cognitive ability) to overcome the limitations of MN.
URI
http://earsiv.uskudar.edu.tr/xmlui/handle/123456789/722
Collections
  • Psikoloji Bölümü Akademik Makale Listesi

DSpace software copyright © 2002-2013  Duraspace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

LoginRegister

DSpace software copyright © 2002-2013  Duraspace
Contact Us | Send Feedback
Theme by 
@mire NV