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Abstract Schizo-obsessive disorder is characterized by the

clinical syndrome in which comorbid obsessive–compul-

sive disorder accompanies schizophrenia. A substantial

number of studies have investigated the neuropsychologi-

cal and clinical differences between schizophrenia and

schizo-obsessive disorder. However, the neurostructural

differences between these two groups have not been ade-

quately investigated. The aim of this study was to explore

gray matter differences between schizophrenia and schizo-

obsessive patients using voxel-based morphometry and

support vector machines combined with feature selection

algorithm. Twenty-three schizophrenia and 23 schizo-ob-

sessive patients matched by age, gender and handedness

were recruited. Clinical assessments were completed in

addition to high-resolution structural MRI scanning. Group

differences were investigated using contrast maps, and

significant regions were subjected to a feature selection and

support vector machine hybrid model. In addition, voxel-

of-interest values for the commonly shared brain areas

between schizophrenia and OCD reported in previous

meta-analyses were also used as inputs in this step. The

results showed that schizo-obsessive patients had greater

gray matter densities in paracentral areas (including sup-

plementary motor area) and middle cingulate gyrus than

schizophrenia patients. These brain areas together with the

fronto-subcortical areas could successfully discriminate

two groups with an accuracy of 78.26 %. Our results pro-

vide the first neuroanatomical evidence that schizo-obses-

sive disorder and schizophrenia may be two distinct

clinical entities. Based on these findings, considering

schizo-obsessive disorder as a subtype of schizophrenia is

discernible.

Keywords Schizophrenia � Schizo-obsessive disorder �
VBM � Machine learning � Ant colony optimization

1 Introduction

Obsessive and compulsive disorder (OCD) is symptomati-

cally characterized by the intrusive thoughts (obsessions)

and repetitive behaviors (compulsions) that are carried out to

prevent anxiety or distress. Around 7–46 % of schizophrenia

patients experience obsessive–compulsive symptoms, and

these symptoms are present in both the early and chronic

stages of the illness [1]. With the support of clinical and

epidemiological studies, a potential subtype called schizo-

obsessive disorder has been defined, referring to

schizophrenia patients who experience OCS or fulfilling the

diagnostic criteria for obsessive–compulsive disorder (co-

morbid OCD) [2]. As a note, the main phenomenological

difference between OCS and comorbid OCD in

schizophrenia is mainly based on the clinical severity of

OCS symptoms and deteriorating effects of these on social

functioning. Despite the well-developed literature on the

clinical and neuropsychological distinction of schizophrenia

and schizo-obsessive patients, schizo-obsessive disorder has
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not been included in widely used psychiatric classification

systems yet [3]. One contributing reason for this is the rel-

ative paucity of data on the neuroanatomical distinctions

between schizophrenia and schizo-obsessive disorder.

Clinical and neuropsychological studies showed group

differences between schizophrenia and schizo-obsessive

patients in symptom severity [4], neurological soft signs

[5], clinical prognosis [6] and neurocognitive capacity [7].

Interestingly, some studies reported poor global function-

ing [8], whereas others reported fewer symptoms and

greater social functioning [9] in schizo-obsessive patients

as compared with schizophrenia. These mixed results could

be explained by the lack of established criteria for diag-

nosing schizo-obsessive disorder. For instance, Cunill et al.

[10] conducted a comprehensive meta-analysis where they

found that schizophrenia patients with comorbid OCD were

functioning better than schizophrenia patients experiencing

OCS. The authors argued that OCS in schizophrenia may

be due to various reasons (i.e., side effects of some

antipsychotics), whereby OCD in schizophrenia may rep-

resent a subtype in schizophrenia [8]. This notion was also

supported by other studies (i.e., [11]). Regarding cognitive

profile, Patel et al. [12] compared schizophrenia patients

with and without OCD using a comprehensive cognitive

test battery. Similar to patients with OCD, they found

greater deficits only in attentional shifting for schizo-ob-

sessive subjects compared to schizophrenia.

In terms of neuroanatomical differences, only two studies

have directly compared the structural cerebral differences

between schizo-obsessive and schizophrenia patients by

using manual anatomical tracing. Iida et al. [13] found a

greater enlargement of the lateral and third ventricle in

schizophrenia patients with OCS as compared to

schizophrenia without OCS. Aoyama et al. [14] found

shrinkage in the left hippocampus in juvenile-onset

schizophrenia patients with OCS (compared to without

OCS). The latter study also found significant negative cor-

relations with duration of illness and gray matter (GM) loss

in the frontal lobe only in the schizophrenia patients expe-

riencing OCS. As a note, schizo-obsessive disorder was not

defined as comorbid OCD and schizophrenia in these two

studies. Apart from these studies, a thought-provoking review

suggested that schizo-obsessive disorder (as defined by

comorbid OCD) may share common neural substrates with

both OCD and schizophrenia [15]. The authors argued that

commonly shared structures such as the caudate nucleus,

orbitofrontal cortex, cingulate gyrus and the mediodorsal

thalamic nucleus may be the potential candidates for a neu-

ronal network sub serving the schizo-obsessive disorder.

Ample studies have investigated the GM abnormalities in

OCD and schizophrenia separately. Regarding OCD, GM

loss in the fronto-subcortical pathways that include orbito-

frontal cortex, anterior cingulate, caudate nucleus, globus

pallidus and thalamus were commonly reported in meta-

analyses [16–18]. Interestingly, GM abnormalities in the

same areas were also demonstrated in schizophrenia [19, 20].

Differently, abnormalities in the prefrontal cortex, supra

marginal gyrus, paracentral areas, insula, parahippocampus

and amygdala were pronounced more in schizophrenia than

any other psychiatric disorder [20–22].

The ultimate goal for comparative neuroimaging studies is

to highlight potential differences in neurophysiological net-

works and identify biomarkers for clinical use. Recent neu-

roimaging methods, such as voxel-based morphometry

(VBM), have become popular in this regard. One caveat is

that biomarkers for clinical use should make inferences at the

individual level whereby VBM analyses are conducted at the

group level [23]. To overcome this issue, recent VBM studies

extended their analyses by introducing their most informative

features, such as the volume of interest (VOI) values to

support vector machines (SVMs). SVM is a machine learning

technique that uses statistical learning theory to solve multi-

dimensional functions and is especially used for binary

classification [24]. The aim of SVM is to propose an algo-

rithm allowing the discrimination of individual samples into

distinct classes. That also involves optimizing the parameters

of the algorithm using both training data and evaluating its

generalization performance employing the test data. Besides,

nonlinear utilize a method that is referred as the ‘‘kernel

trick’’ to find the most appropriate and easy way for mapping

the original features to higher-dimensional space using some

nonlinear mapping in the preprocessing steps. Therefore, the

main advantage is that SVM is able to model highly non-

linear systems and provide high generalization capacity.

Recent neuroanatomical studies using VBM combined with

SVM have shown encouraging findings that are clinically

meaningful in schizophrenia [25], autism [26] and Alzhei-

mer’s disease [27]. In these studies, VOIs or gray matter

segmentation images (input features) were taken as a point in

a high-dimensional space via a kernel function, and then, the

data were separated into two classes (e.g., patients vs. con-

trols) by finding a hyperplane (decision function). Despite the

advantages of using SVM, one potential drawback when

modeling biological systems is the noise and less informative

features of the data. Therefore, selecting the optimal features

in the preprocessing step is critical for the performance of

SVM-based classifications [24]. Within this perspective, a

nature-inspired algorithm, ant colony optimization (ACO)

which has showed potential for optimizing neural signals

[28], was combined with SVM for the current study. Con-

cerning the diagnostic dilemma of distinguishing between

schizophrenia and schizo-obsessive disorder, neither VBM

nor SVM analyses have been used up until today.

Given all, discriminating schizophrenia and schizo-ob-

sessive disorder is important for both clinicians and

researchers as these clinical entities have different treatment
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modalities and prognosis. Besides, as there is not a clear

consensus in the discrimination of these clinical entities, a

neuroimaging study that is combined with SVM could be

very informative. Within this direction, the ultimate aim of

our study was to investigate structural GM differences

between schizophrenia and schizo-obsessive disorder. We

further utilized an explorative approach to evaluate the

discriminative power of selected neuronal structures

between schizophrenia and schizo-obsessive disorder. In this

step, we first used a whole brain voxel-wise analyses to

observe significant group differences. Following this, VOIs

for the corresponding brain areas where group differences

were found and VOIs including brain regions in which

neurostructural abnormalities were previously reported for

schizophrenia and OCD [13–22] were subjected to ACO

feature selection and SVM classification process. Specifi-

cally, this study is based on the following twofold hypoth-

esis: First, in terms of abnormal GM volume, we predicted

that schizo-obsessive patients have specific differences from

schizophrenia patients. Second, our ACO-SVM analyses

could present a significant accuracy to discriminate

schizophrenia and schizo-obsessive patients.

2 Materials and methods

2.1 Participants

Twenty-three schizophrenia patients and 23 schizo-obses-

sive patients, matched on age, gender and handedness (The

Edinburgh Inventory; [30]), were enrolled for this study.

Patients were recruited from the outpatient department of

NPIstanbul–Uskudar University Psychiatric Hospital. To

ensure longitudinal certainty of the psychiatric diagnosis, we

recruited patients who had regularly visited the outpatient

department for at least 1 year before recruitment. The

exclusion criteria were previous history of neurological

disease, head injury, clinical evidence of mental retardation,

the current presence of acute psychotic episode and the

fulfillment of DSM-IV criteria for schizo-affective disorder

or alcohol and substance dependence. Patients were diag-

nosed by inspecting their medical history and a clinical

interview based on DSM-IV completed by an experienced

psychiatrist. Patients who fulfilled diagnostic criteria for

schizophrenia and OCD according to DSM-IV were defined

as schizo-obsessive, similar to previous studies [10]. All

patients continued to receive treatment as usual and chlor-

promazine equivalent dosages (CPZ) were calculated for all

patients in order to control for the medication effects

[31, 32]. None of the patients were receiving clozapine, an

antipsychotic that has been related to OCS symptoms in

schizophrenia [33]. As a note, the antidepressant uses in the

both groups were not ruled out for this study. The ethical

permission was granted from the local institutional ethics

committee and the written informed consents were obtained

from all of the patients. The summary of sample charac-

teristics with the statistics is given in Table 1.

2.2 Clinical assessment

An evaluation form was conducted for both groups to collect

information about socio-demographic details, duration of

illness, chronology of symptoms and the treatment history.

The severity of general psychiatric and schizophrenic

Table 1 Demographic, clinical

variables and brain volumes of

the whole study group

Schizo-obsessive Schizophrenia

N Mean SD N N % Mean SD p value

Gender

Male 16 16 69.57 –

Female 7 7 30.43 –

Age 32.22 9.24 32.87 8.51 0.81

Duration of illness 8.52 5.67 6.00 3.18 0.07

PANSS total score 92.25 34.92 76.12 35.97 0.18

BPRS score 44.85 18.13 37.07 17.28 0.22

Yale-brown total score 33.11 8.33 – – –

CPZ equivalent dose 247.14 231.57 231.39 138.92 0.80

GM 638.76 63.79 629.90 67.91 0.65

WM 539.96 54.96 549.87 73.85 0.61

CSF 240.26 36.74 238.27 32.10 0.85

TIV 1418.97 129.66 1418.05 144.30 0.98

SD standard deviation, PANSS Positive and Negative Syndrome Scale, BPRS Brief Psychiatric Rating

Scale, CPZ Chlorpromazine, GM gray matter volume, WM white matter volume, CSF cerebrospinal fluid,

TIV total intracranial volume
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symptoms was evaluated by the Brief Psychiatric Rating

Scale (BPRS), [34] and the Positive and Negative Syndrome

Scale (PANSS), [35], respectively. Schizo-obsessive

patients were carefully screened for obsessive–compulsive

symptoms (OCS) by a psychiatrist experienced in the

diagnosis of OCD using clinical index called Yale-Brown

Obsessive–Compulsive Scale (YBOCS), [36].

2.3 MRI data acquisition

Structural MRI data were collected with a SENSE eight-

channel head coil on a 1.5 Tesla Philips Achieva Scanner

(Philips Medical Systems, Best, The Netherlands) at

NPIstanbul–Uskudar University, Istanbul, Turkey. An

MPRAGE sequence (TR/TE = 8.6/4.0 s, flip angle = 8�,
FOV = 240 mm, acquired voxel size = 1 mm, 150 coro-

nal slices without gap, scan duration = 7.23 min per vol-

ume) was used to acquire high-resolution T1-weighted

images of the brain. A T2-weighted axial scan and a

coronal fluid-attenuated inversion recovery (FLAIR) scan

were also acquired to allow for the exclusion of subjects

with focal or diffuse vascular damage. Accordingly, an

experienced radiologist evaluated the T2 scans and none of

the subjects were excluded due to focal or diffuse vascular

damage.

2.4 VBM analyses

The between-group differences in gray matter volume were

analyzed by using voxel-based morphometry (VBM), [37].

Data were first processed and tested using SPM8 (Welcome

Department of Imaging Neuroscience Group, London, UK;

http://www.fil.ion.ucl.ac.uk/spm) running in MATLAB

(R2010A; The MathWorks, Natick, MA, USA). Before

preprocessing, the coordinate origin of each native image

was manually set on the anterior commissure. All prepro-

cessing steps were completed with the VBM8 Toolbox

(http://dbm.neuro.uni-jena.de/vbm.html), using default

parameters. In brief, the images were bias corrected to

remove MRI inhomogeneities and noise with a spatially

adaptive non-local means (SANLM) filter. To further

improve signal-to-noise ratio, a spatial constraint (incor-

porated in the segmentation procedure) was applied, based

on a classical Markov random field (MRF) model. Regis-

tration to standard MNI space consisted of a linear affine

transformation and a nonlinear deformation using high-

dimensional DARTEL normalization [38]. Subsequently,

analyses were performed on segmented gray matter (GM)

and white matter (WM) images, which were multiplied by

the nonlinear components derived from the normalization

matrix in order to preserve actual GM and WM values

locally (modulated GM and WM volumes). To check the

quality of the normalization procedure, the normalized

unsegmented images were visually inspected. Covariance

between normalized segmented images was calculated to

check for homogeneity of variance and to identify potential

outliers, and none of them were excluded. Lastly, the

segmented and modulated images were spatially smoothed

with an 8 mm full-width-half-maximum (FWHM) Gaus-

sian kernel. Further to this, the MarsBaR toolbox together

with Automated Anatomical Labeling (AAL) templates

was used to construct a volume of interest (VOI) from the

original voxel in native space. Finally, partial volume

estimates for gray matter were extracted within the VOI.

2.5 ACO-SVM analysis

In the current study, similar to previous studies we used

VOIs as input features for SVM-ACO analysis [25, 39, 40].

Accordingly, we first calculated VOIs for brain areas that

have been related to schizophrenia and OCD in the previ-

ous aforementioned literature based on our priori hypoth-

esis (included brain regions were: bilateral amygdala,

caudate, anterior–middle–posterior cingulum, parahip-

pocampus gyrus, insula, supra marginal gyrus, thalamus,

putamen, orbitofrontal cortex; 22 regions in total). These

areas were selected using the WFU PickAtlas of SPM as

this toolbox allows the automatic and accurate selection of

ROIs based on the Talairach Daemon Database [41] (WFU

PickAtlas, version 3.0.5). In addition, brain regions that are

significantly different between schizophrenia and schizo-

obsessive patients according to VBM analyses were also

included if they were not listed in these twenty-two

regions. Instead of the significant clusters, to minimize

double-dipping VOIs for corresponding brain regions as a

whole were included in this step.

2.5.1 Feature selection process using ant colony

optimization

Although the number of regions subjected to the SVM-ACO

analysis was smaller than the original number of brain

voxels, measures obtained from these regions may be less

effective, irrelevant and redundant for classification.

Therefore, a feature selection and optimization procedure is

required to select a small set of the most informative features

for classification. In general, feature selection processes

could be grouped under three approaches: wrapper

approach, embedded approach and filter approach. Among

others, wrapper approach uses a selection algorithm to make

a search along the search space of all possible features and

then assess each feature set by executing a classifier on the

subset. It uses the prediction process as part of selection

procedure, and thus, a learning method is used to evaluate

the subsets according to their predictive ability [42].

Wrappers are constituted by three main components, which
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are feature selection, modeling process and feature evalua-

tion criteria (the relationship between those consecutive

steps is depicted in Fig. 1). In order to extract the best subset

of features, a wrapper-based approach incorporates the

classifiers with stochastic optimization methods such as

genetic algorithms, simulated annealing, ant colony opti-

mization, particle swarm optimization. Among these meth-

ods, recent population-based optimization algorithms such

as genetic algorithms and ACO have shown a better per-

formance as these methods attempt to achieve better solu-

tions by application of knowledge from previous iterations

[43]. ACO algorithm developed by Dorigo et al. [44] was

inspired from the behavior of real ants in forage for food

(finding the shortest path between their nest and a food

source) and has been successfully applied to optimization

systems in the field of biomedical signaling- and EEG-based

classifications [28, 29] In our study, the wrapper approach

was used together with ACO optimization. According to the

ACO protocol, following the error calculation steps, pher-

omone table was updated until the algorithm can assure

diversity and converge to optimal solution. Successively, a

new feature set is selected by ACO to be assigned to SVM

classifier. This process loops till the stopping criterion, a

non-decreasing error value for ten successive iteration or

error value less than 0.02 mean squared error value, is

satisfied.

Using ACO algorithm, the uninformative features (brain

regions) were excluded and the weight of each selected

feature was calculated between 0 and 1 based on the pher-

omone table of the ACO. Here, the weight for each feature

in the ACO implies the relative importance of regions

compared to each other across the model. Importantly, the

performance of the ACO-SVM model was based on not only

the SVM classifier but also the weighted feature set of ACO.

These weight values for the optimized features may thus be

used to reveal the discriminative potential of each brain

region included in last model. As to the heuristic parameters

of ACO, r and t are constants to trade off the relative

importance of the pheromone and the heuristic information.

Since many studies recommend r = 1 and t = 5, we have

assigned those values for the parameters, respectively.

Besides, some recent studies focus on improved versions of

ACO in order to eliminate the intervention of system expert

and to speed up the process.

2.5.2 Support vector machine (SVM) classifier and kernel

function

In SVM, to get a maximal margin hyperplane discrimi-

nating two classes, the selected features are implicitly

mapped to a higher-dimensional space by means of a

kernel function. Here, SVM with radial basis function

Fig. 1 Flowchart of nested k-fold cross-validation with classification and feature selection (ACO) process

Neural Comput & Applic

123



(RBF) kernel that non-linearly maps samples into a higher-

dimensional space was used. RBF was selected over a

linear kernel firstly because recent neuroimaging studies

have demonstrated that RBF-SVM have significantly out-

performed linear SVM [45]. Secondly, nonlinear classifiers

may state to high-level feature conjunctions in a way that

they differed from their response to individual features

[46, 47]. The cost (C) parameter and RBF kernel hyper-

parameter (d) were fixed and set as 0.1 and 0.001,

respectively, in our study.

2.5.3 Cross-validation process

The validation outcome of ACO-SVM model was evalu-

ated with k-fold cross-validation a commonly used proce-

dure in previous neuroimaging studies [25–27, 47, 48].

Importantly, cross-validations were conducted in a nested

manner (nested k-fold CV). Based on recent studies, this

procedure was selected to strictly control the information

leak between the training and test data and to get a totally

unbiased estimate of classification accuracy [24, 47–51]. In

brief, the idea behind nested k-fold CV is to divide the

dataset into k scattered subsets, just as used in the k-fold

CV method. In addition, a separate k-fold CV within the

k - 1-fold during training is performed [51]. As a note, our

k-fold nested cross-validation consisted of two cross-vali-

dation (CV) procedures (the inner and outer CV) wrapped

around each other. Here, the inner CV (fivefold) was used

for model training and generation, while the outer CV

(sixfold) evaluates the performance of the models gener-

ated. Accordingly, the data were first split into six parts

using stratified sampling. Onefold was reserved for outer

CV and the remaining fivefold were used for training

process in the inner CV. In the inner CV cycle, five models

were generated at the end. Following the inner CV loop,

one reserved outer CV test fold was swapped with one of

the folds of five training folds so that the models generated

by the inner CV process could be tested by completely

different test data for each outer CV cycle. The best model

was selected based on minimum error on training data from

entire set of generations, performance classification

parameter and fitness value. The details of k-fold nested

CV procedure together with feature selection and classifi-

cation process are illustrated in Fig. 1. The accuracy of the

classifier was measured by the proportion of observations

that were correctly classified into schizophrenia or schizo-

obsessive group ((True positive ? True negative)/(True

positive ? True negative ? False positive ? False nega-

tive) * 100)). In addition to accuracy, sensitivity, specificity

and AUC values were also calculated. SVM-ACO analyses

were conducted with open source (libSVM; http://www.

csie.ntu.edu.tw/*cjlin/libsvm/) and in-house codes in

MATLAB.

2.6 Data analysis

Demographics and scores on clinical evaluations were

compared between groups with independent samples

t tests. We analyzed the data in the following three steps.

Firstly, the overall intracranial volume (TIV) was calcu-

lated as the total sum of the volumes of GM, WM and CSF.

The differences of GM, WM and TIV between subjects and

controls were compared with independent samples t tests.

The statistical threshold was set to 0.05 in this step

(p value). Secondly, for the GM analysis, modulated GM

images in each group were subjected to a voxel-wise t test

analysis in SPM8 with covariation for TIV and duration of

illness. To control for errors due to multiple statistical

testing, the results were estimated with a cluster level

threshold of p\ 0.05, with voxel-level threshold of

p\ 0.001 and a minimum cluster size (k) of 99 voxels,

using the AlphaSim software (http://www.restfmri.net/

forum/REST_V1.4), which applied Monte Carlo simula-

tion (parameters: individual voxel p = 0.001; rmm = 2.5;

5.000 simulations). Importantly, the use of this approach is

legitimized in ample VBM studies and the FWE correction

may be too conservative for our explorative study [52]. In

the third step, extracted VBM features were subjected to

the SVM-ACO model to identify the discrimination accu-

racy and selected features.

3 Results

In preliminary analysis, we did not find any differences in

the BPRS and PANSS score of the schizophrenia and

schizo-obsessive patients. Besides, the GM, WM and CSF

volumes did not differ between groups (see Table 1 for

details).

3.1 Voxel-wise whole brain difference

between schizo-obsessive versus schizophrenia

patients

Testing the regional GM density between schizophrenia

and schizo-obsessive patients showed two clusters of

decreased GM in the schizophrenia group. The cluster

sizes, t-values, Brodmann areas and MNI coordinates for

these areas are given in Table 2. Accordingly, the first

cluster comprised from two peak voxels: the right para-

central lobule and right supplementary motor area that also

includes the middle portion of right cingulate cortex. The

second cluster comprised left supplementary motor area

including the left middle cingulate (see Fig. 2 for illustra-

tion). Lastly, testing the gray matter loss in schizo-obses-

sive as opposed to schizophrenia patients did not show

significant brain region differences.
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Table 2 Summary of peak differences for areas with greater gray matter density in schizo-obsessive compared to schizophrenia patients

Clusters Regions Brodmann

area

Cluster

size

Peak voxel

coordinates (MNI)

Peak voxel t-value

x (mm) y (mm) z (mm)

Cluster 1 Right paracentral lobule 6 120 11 -34 54 4.00

Right supplementary motor area/right middle cingulum 5/24 9 -24 49 3.45

Cluster 2 Left supplementary motor area/left middle cingulum 32/24 101 -9 9 46 3.83

Results were AlphaSim corrected (=\0.05 FWE; extent threshold = 99 voxels; df = 1.42)

MNI Montreal Neurological Institute

Fig. 2 Areas with greater gray matter density in schizo-obsessive compared to schizophrenia patients. SPM{t} statistically significant regions

(using AlphaSim correction for multiple comparisons) superimposed on a T1 brain template image (L left, R right)
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3.2 Results of the ACO process

Together with the bilateral GM differences in the para-

central areas, in total twenty-four regions were subjected to

the SVM-ACO model. Following the ACO process, eigh-

teen brain regions were selected and subjected to the SVM

model as inputs (bilateral parahippocampus, left putamen,

right amygdala, right supra marginal gyrus, left posterior

cingulate were excluded). Regarding the discrimination

potential between the patient groups, left and right thala-

mus, right caudate, left and right anterior, middle cingu-

lum, right posterior cingulum, left supramarginal area and

left paracentral lobule (including supplementary motor

areas) were fully weighted, whereas left orbitofrontal cor-

tex (weight value: 0.97), right orbitofrontal cortex (weight

value: 0.74), right putamen (weight value: 0.84), left

amygdala (weight value: 0.74), right (weight value: 0.58)

and left insula (weight value: 0.65) and right paracentral

lobule (weight value: 0.97) had estimated weights less than

1.

3.3 SVM-ACO model performance

Regarding, the classification results and accuracy values,

our hybrid model could discriminate patients of schizo-

obsessive and schizophrenia with a considerably high

accuracy (78.26 %), sensitivity (0.79), specificity (0.78)

and an acceptable area under curve value (AUC) in the

ROC analyses (0.79; see ROC curve in Fig. 3). Accord-

ingly, the model correctly classified 18 patients (over 23) in

the schizo-obsessive group. P-values for accuracy, sensi-

tivity, specificity and AUC were below 0.01. Kappa value

for the current model was 0.57. Lastly, the mean duration

of illness was regressed to the decision values of the final

model and we did not observe any noteworthy effect on the

SVM model (p[ 0.05).

Here, the diagonal line represents the change level. The

area under the diagonal is 0.5 unit square and AUC = 0.5

means the chance discrimination that curve located on

diagonal line in ROC space. The minimum AUC should be

considered a chance level, i.e., AUC = 0.5.

4 Discussions and conclusions

The first goal of this paper was to explore the GM differ-

ences between patients with schizo-obsessive disorder and

schizophrenia. The second goal was to explore the dis-

criminative power of these differences using ACO-SVM

hybrid model. Our results showed significantly greater GM

densities for schizo-obsessive patients in bilateral para-

central areas, including supplementary motor area and

middle cingulate. In addition, these areas, together with the

brain regions sharing common anatomical substrates with

OCD and schizophrenia (i.e., orbitofrontal cortex, thala-

mus), could discriminate these two groups with a consid-

erably high accuracy.

In light of these findings, relatively preserved GM

density in supplementary motor area and middle cingulate

cortex in schizo-obsessive patients may indicate that

schizo-obsessive disorder represents a subtype of

schizophrenia with similar psychotic symptoms, yet with

different neurostructural abnormalities. Reductions in the

GM density in the paracentral lobule, including

Fig. 3 ROC curve for the SVM

and ACO hybrid model used for

VOI-based classification. FP

false positive
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supplementary motor area, have been commonly reported

previously in schizophrenia patients as compared to heal-

thy individuals [52]. Furthermore, studies in prodromal

schizophrenia demonstrated GM loss in supplementary

motor area even before the first psychotic episode [53]. In

addition to this, a recent study found that GM reductions in

supplementary motor area were positively associated with

increased psychotic symptoms in schizophrenia [54]. In

general, the paracentral lobule, including supplementary

motor area, has a key role in motor control and is

responsible for sending and receiving inputs to and from

the somatosensory projections of the thalamus, basal gan-

glia and other cortical motor areas [55, 56]. Moreover,

middle cingulate cortex is essential for action initiation and

is related to multiple prefrontal, parietal and premotor areas

in the execution of self-initiated movements [57, 58].

Accumulating evidence supports the progenitor role of

these three brain areas in the planning and complex deci-

sion making processes [59] that are significantly impaired

in schizophrenia and OCD. Taken as a whole, these

demonstrated differences led us propose that the disrupted

neuronal synchrony in early somatosensory integration,

action execution and observation may have a dominant role

in schizophrenia, whereas an alternative and possibly less

severe pathway may pave the ground for the development

of schizo-obsessive disorder. Several authors consider

OCD and schizophrenia as two entities having a single

continuum. One functional difference that has been

demonstrated in OCD in schizophrenia is the different

degrees of impairments demonstrated in dorsolateral

(DLPFC) and ventromedial prefrontal cortex (VMPFC).

Accordingly, the network that includes impairments in

VMPFC more than DLPFC may result with OCS in

schizophrenia whereby, a greater DLPFC could explain the

psychotic symptoms [15–19]. Although we could not find

GM differences in DLPFC in the current study, studies

investigating functional activities between DLPFC and

VMPFC in schizophrenia and schizo-obsessive disorder

may support such explanation.

The ACO-SVM approach in this study classified

schizophrenia and schizo-obsessive patients with a high

overall accuracy. Accordingly, the discriminative role of

paracentral areas, orbitofrontal cortex, cingulate cortex and

subcortical structures between schizophrenia and schizo-

obsessive patients in this study may support our assumption

that these disorders should be considered as separate enti-

ties. As a note, this study used a hybrid model that selected

more informative VOI-based features first, and then clas-

sified the subjects benefiting from the feature subset. This

may be one possible reason why we found greater accuracy

as compared with other VBM studies using only SVM in

schizophrenia [60]. It should also be noted that, based on

the literature, some brain regions that were not evident in

the conventional VBM analysis were introduced as addi-

tional features together with the significant brain regions

found in the first step. Most of these features have survived

from the analyses steps and introduced in last ACO-SVM

model. Taken together, the ACO-SVM approach in this

study could be useful as a supplementary multivariate

analysis method in conjunction with the univariate VBM

analyses.

Whether schizo-obsessive disorder should be classified

under obsessive–compulsive or schizophrenia spectrum

disorder is under debate [2]. According to our results, we did

not show differences in the GM areas such as prefrontal (i.e.,

DLPFC; [20]) and temporal areas (i.e., TPJ; [19]) which

were specific to schizophrenia in the previous studies com-

paring schizophrenia with other psychiatric disorders (i.e.,

[22]). Moreover, there has been a debate in the literature on

whether deficits in orbitofrontal cortex, cingulate cortex and

subcortical structures (i.e., thalamus, putamen and amyg-

dala) are specific to the brain–behavioral models of OCD, or

in contrast, abnormalities in these brain regions are common

for both schizophrenia and OCD. However, we are not able

to make any contribution to this debate as we did not have

an OCD group in our study. In the literature, only one VBM

study compared the GM volumes of OCD and schizophrenia

patients and found greater orbitofrontal cortex loss in

schizophrenia [61]. A suggestion for future studies could be

to investigate the associations between the neuropsycho-

logical profile and structural brain abnormalities between

OCD, schizophrenia and schizo-obsessive patients. Despite

all, based on our findings, it could be suggested that schizo-

obsessive disorder may be classified under the umbrella of

schizophrenia spectrum disorders, rather than OCD. (i.e.,

[1, 62]). One main limitation of this study is that all patients

were under medication, and it is evident that antipsychotics

may also contribute to the development of OCS [29].

Besides, the effect of antidepressant use over the GM den-

sity was not controlled in this study. As a note, we controlled

the effects of antipsychotics and did not find any group

differences in the calculated mean CPZ equivalents. Another

potential limitation is that there was a trend toward a sig-

nificant difference in the duration of illness between the two

groups. We controlled this issue by including the mean

duration of illness variable as a nuisance covariate in our

statistical model. Lastly, almost all brain regions whose

GMVs were used as inputs in the SVM analyses were a

priori selected based on the previous meta-analyses. Only

paracentral lobule was found to be significant in the VBM

analyses and was also included into the SVM analyses.

Therefore, it could be argued that a slightly less conservative

approach was used to control double-dipping for the current

study.

This study provides preliminary evidence that schizo-

obsessive disorder may represent a unique subtype in
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schizophrenia spectrum. A necessary follow-up to this

research is the replication of these findings in larger sam-

ples using multivariate neuroimaging approaches and

alternative input features (VOIs, cortical thickness, fMRI

activations, manual tracing). Lastly, identifying specific

neuroanatomical differences in schizo-obsessive patients

using feature selection and SVM could also have clinical

importance in predicting prognosis and treatment response

in the long-term follow-up for our patients.
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