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The paper explores diffraction of acoustic waves at a two-dimensional hard trilateral cylinder with

rounded edges. It represents the extension of the physical theory of diffraction (PTD) for finite

objects with rounded edges. A first-order PTD approximation is developed. Integral equations are

formulated for acoustic fringe waves and solved by method of moments (MoM). Good agreement

is observed with the exact solution found by MoM when the object size exceeds a few wavelengths.
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I. INTRODUCTION

The paper extends the physical theory of diffraction

(PTD) for finite objects with rounded edges. It started

recently for objects with soft boundaries (Apaydin et al.,
2017b). Here, we consider diffraction of acoustic waves at a

hard trilateral cylinder. Notice that this two-dimensional

acoustic problem admits electromagnetic interpretation. It is

diffraction at a perfectly conducting object illuminated by a

plane wave with its magnetic field vector parallel to the z-

axis (Fig. 1). The acoustic surface velocity potential u can be

treated as the surface electric current j (Ufimtsev, 1989,

2006, 2014). This current terminology is used in the paper.

More information about PTD can be found in Ufimtsev

(2013, 2009, 2014). See also the recent PTD applications for

finite wedges (Rozynova and Xiang, 2017; Xiang and

Rozynova, 2017). Notice as well the theoretical (Apaydin

et al., 2017b) and empirical (Chambers and Berthelot, 1994)

studies of sharp edges vs rounded edges.

The fundamental idea of PTD is a separation of the sur-

face currents in two components, j¼ jPO þ jfr (Ufimtsev,

1989, 2014). The first one is the usual physical optics (PO)

approximation while the second represents the diffraction/

fringe component caused by the curvature of the object sur-

face. This component is found via solving the surface fringe

integral equations (Apaydin et al., 2016b; Apaydin et al.,
2017a) by the method of moments (MoM). Alternative

approaches in the theory of diffraction at rounded objects

and polygonal cylinders are presented in Elsherbeni and

Hamid (1985), Hallidy (1985), Hamid (1973), Lucido et al.
(2006), Mitzner et al. (1990), Vasiliev et al. (1991), and

Yarmakhov (2004).

The paper is organized as follows: Sec. II describes the

geometry of the problem. In Sec. III, the integral equations

for the acoustic fringe currents are formulated. Section IV

presents numerical simulations.

The time dependence expð�ixtÞ is used in the paper.

II. GEOMETRY OF THE PROBLEM

We investigate diffraction of acoustic waves at a

hard equilateral cylinder with sections L1¼ L2¼L3 shown in

Fig. 1 under the boundary condition @u/@n¼ 0. The cylinder

is illuminated by the incident plane wave

uinc ¼ eikx: (1)

Sections L01, L02, L03 are parts of circular cylinders with radius

a. They are smoothly conjugated with the faces of the tangen-

tial wedges. Points 1, 2, and 3 denote the tips of these wedges.

The angle between faces equals to 2b¼p/3, that is b¼ p/6.

III. FORMULATION OF THE PROBLEM

In a high-frequency situation, when the acoustic wave-

length is very small compared to the distance between

edges, one can neglect the multiple diffracted edge waves.

In this case, the acoustic fringe currents jfr in the vicinity

of the object edges are asymptotically identical to those on

the rounded tangential wedges with the same shape of the

edge and with infinite faces. We call them primary (single-

diffracted) currents and focus on their calculation. Denote

these currents as j f r
1 ; j f r

2 ; jf r
3 for the wedges whose extended

faces intersect each other at points 1, 2, 3, respectively. To

calculate them, we apply the fringe integral equations

introduced in Apaydin et al. (2016b). They are reproduced

here briefly,
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for the illuminated side Lill and
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for the shadowed side Lsh. Here, L> 0 and dl0 � 0. The sym-

bol p:v:
Ð

means the Cauchy principal value of the integral.

The integral terms on the right-hand side of Eqs. (2) and (3)

represent the PO acoustic field. Equations (2) and (3) can be

solved by the classic MoM (Harrington, 1993). Actually, we

need to solve three sets of integral equations associated with

three tangential wedges:

• the wedge with L¼ L01 þ L1 þ L2,
• the wedge with L¼ L02 þ L1 þ L3,
• the wedge with L¼ L03 þ L3 þ L2,

where L1, L2, L3 formally are infinitely long, but during prac-

tical calculation, they have been set to equal

L1¼ L2¼ L3¼L (Fig. 1) and finite. It was established that

this assumption is effective already in the case when L� 3k
(Ufimtsev, 2014).

Denote the acoustic fringe currents on the rounded tan-

gential wedges as jfr1 ; jfr
2 ; jfr3 , respectively. The total fringe

current on the actual object is the sum

jfr;PTD ¼ jfr
1 þ jfr2 þ jfr

3 : (4)

Solving Eqs. (2) and (3), the fringe current Eq. (4) is

obtained.

To test/validate this PTD approximation, the exact

fringe current has been calculated as the difference:

jfr;exact ¼ jtot;exact � jPO: (5)

Here jtot,exact is found by solving the integral equation for the

actual total current on the object:
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that includes all multiple fringe waves/currents. The acous-

tic fields generated by the surface currents are calculated

as

u x; yð Þ ¼
i

4

ð
L

j x0; y0
� � @

@n
H 1ð Þ

0 krð Þdl0: (7)

The currents in Eqs. (4) and (5) and the acoustic fields

generated by them are indicated in Figs. 2–6 by labels PTD

and MoM, respectively. The MoM data are considered to be

exact.

Notice that in Figs. 3–6 we plot the normalized acoustic

scattering cross-section rnorm defined by (5.45) in Ufimtsev

(2014) with l¼ 2a þ L. Equations (2), (3), and (6) have been

solved numerically by MoM. Examples of its applications to

fringe integral equations are given in Apaydin et al. (2016a)

and Apaydin and Sevgi (2016).

The MoM has been used in scattering and diffraction

modeling (Apaydin et al., 2014; Uslu et al., 2014). In this

method, the object under investigation is discretized and

replaced with a number of neighboring segments. The seg-

ment lengths are specified according to the wave fre-

quency. As a rough criterion, the length of each segment

should be equal to one-hundredth of the wavelength for

discretization in almost all frequency and time domain

models (this is a rough discretization; depending on the

problem at hand as many as several dozen segments may

be required).

FIG. 2. (Color online) Acoustic fringe waves/currents induced on the upper

surface (y� 0) of the hard rounded trilateral cylinder (a ¼ k=5; D ¼ 5k;
dl ffi k=100; NL01

¼ NL02
¼ NL03

¼ 44; NL1
¼ NL2

¼ NL3
¼ 432).

FIG. 1. (Color online) Cross-section of the scattering hard object. Sections

L01, L02, L03 are parts of the circular cylinders with radius a, the length of

sections L1, L2, L3 is L, D ¼ 2a cot bþ L; b ¼ p=6.
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IV. NUMERIC SIMULATIONS

Acoustic fringe currents, fringe fields, and scattered

acoustic fields are comparatively given in this section.

Figure 2 shows fringe currents induced on the upper surface

(y� 0) of the hard rounded trilateral cylinder. Here, solid

and dashed curves belong to jjfr;MoMj and jjfr;PTDj, respec-

tively. The discretization parameters used in the calculations

are mentioned in the figure captions. As observed, the agree-

ment is good. The MoM and PTD curves here totally coin-

cide with the graphical resolution.

Notice here the high peak between two conjugation

points of the section L02 with L1 and L3. It is clearly associ-

ated with the curvature discontinuities at these points.

In the next figures, we plot the normalized acoustic scat-

tering cross-section rnorm. Figure 3 displays the bistatic scat-

tering of acoustic waves at the hard rounded trilateral

cylinder for a¼ k/5. Here, dashed, solid, and dashed-dotted

curves belong to rPO
norm; rMoM

norm , and rPTD
norm, respectively. As

observed, MoM and PTD solutions agree quite well, while

PO is insufficient in representing the diffraction phenomena.

Two important observations follow from this figure.

Maximum acoustic scattering happens in the vicinity of the

shadow direction u¼ 0. It is a well-known phenomenon of

the forward scattering. Its physical nature is considered in

Section 1.5 of Ufimtsev (2014), where it is interpreted as the

shadow radiation. This phenomenon is the result of co-phase

FIG. 5. Acoustic field generated in the far zone by the fringe currents

induced on the hard rounded trilateral cylinder (a ¼ k=5; D ¼ 5k; dl
ffi k=100; NL01

¼ NL02
¼ NL03

¼ 44; NL1
¼ NL2

¼ NL3
¼ 432).

FIG. 6. Bistatic scattering of acoustic waves at the hard and soft rounded tri-

lateral cylinder (a ¼ k=5; D ¼ 5k; dl ffi k=100; NL01
¼ NL02

¼ NL03
¼ 44;

NL1
¼ NL2

¼ NL3
¼ 432).

FIG. 3. (Color online) Bistatic scattering of acoustic waves at the hard

rounded trilateral cylinder (a¼ k=5; D¼ 5k; dlffi k=100; NL01
¼NL02

¼NL03

¼ 44; NL1
¼NL2

¼NL3
¼ 432).

FIG. 4. Acoustic field generated in the far zone by the fringe currents

induced on the hard rounded trilateral cylinder (a ¼ k=5; D ¼ 3k; dl
ffi k=100; NL01

¼ NL02
¼ NL03

¼ 44; NL1
¼ NL2

¼ NL3
¼ 232).
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interference of PO waves in the forward direction that actu-

ally represents the focal line for these waves. The second

maximum is observed in the vicinity of the direction u¼ 60�

and relates to the specular reflection from the face L1. The

field oscillations are due to the interference of three acoustic

edge waves.

The difference between MoM and PTD observed in Fig.

4 is caused by the multiple fringe waves which are absent in

this first-order PTD approximation. Their influence becomes

noticeably smaller in Fig. 5 for the large cylinder with its

size D¼ 5k.

Finally, Fig. 6 demonstrates the scattering of acoustic

waves by the hard and soft cylinders where the PTD data for

the soft cylinder were reproduced from Apaydin et al.
(2017b). For large objects, the main lobes generated by the

PO currents are actually the same for both cylinders. The dif-

ference is observed only in side lobes due to different fringe

waves.

V. CONCLUSIONS

The paper provides the extension of PTD for diffraction

of acoustic waves at hard finite objects with rounded edges.

This extension consists of a combination of the PTD funda-

mental concept of acoustic fringe currents with the MoM

modeling of the currents. In this paper, the rounding shape is

chosen as a circular cylinder. It is clear that the developed

approach can also be applied to objects with other rounding

shapes, as well as for other more complex objects.

Comparison of PTD with the exact data reveals a good agree-

ment already in the case when the size of the object is about

three to five wavelengths. Hence, for these and longer objects

the extended first-order PTD is fully acceptable. Notice also

that compared to the exact data found by MoM the developed

PTD approach allows one to reduce the computer time

approximately by a factor L/(5k). This is the essential advan-

tage of PTD over the direct numeric solutions.
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